Nonlinear Modelling and Analysis of RC Buildings using ETABS
Table of Contents
Basic Approaches in Nonlinear Modeling of Buildings
1.1. The Need for Nonlinear Modeling of Structures
1.2. Introduction to This Document
1.3. Basics of Nonlinear Modeling of Buildings
1.4. Fiber Modeling Approach (Distributed Nonlinearity)
1.4.1. Fiber Sections for Beams
1.4.2. Fiber Sections for Columns
1.4.3. Fiber Sections for Walls
1.4.4. Limitations of Fiber Models [Taken from Powell (2010)]
1.5. Plastic Hinge Modeling Approach (Concentrated Nonlinearity)
1.5.1. Plastic Hinge Modeling of RC Beams [Taken from Powell (2010)]
1.5.2. Force-Deformation Relationships in ASCE 41 and Performance-based Evaluation
1.6. Which Modeling Approach Should be Used for What Application?
Nonlinear Modeling Capabilities of ETABS 2016
2.1. Inelastic Components (Plastic Hinges) in CSI ETABS
2.2. General Action vs. Deformation Curve (for Hinges) in CSI ETABS
2.3. General Hysteresis Models Available (for Hinges) in CSI ETABS
2.3.1. Elastic Hysteresis Model
2.3.2. Kinematic Hysteresis Model
2.3.3. Degrading Hysteresis Model
2.3.4. Takeda Hysteresis Model
2.3.5. Pivot Hysteresis Model
2.3.6. Concrete Hysteresis Model
2.3.7. BRB Hardening Hysteresis Model
2.3.8. Isotropic Hysteresis Model
2.4. Hinge Properties (Applicable to All Hinges)
2.4.1. Hinge Length
2.4.2. Basic Plastic Deformation (Backbone) Curve and Scale Factors
2.4.3. Strength Loss
2.4.4. Acceptance Criteria
2.4.5. Types of P-M2-M3 Hinges
2.4.6. Isotropic P-M2-M3 Hinge
2.4.7. Parametric P-M2-M3 Hinge
2.4.8. Fiber P-M2-M3 Hinge
2.4.9. Hysteresis Models
2.5. Inelastic Material Properties (Applicable to Fiber Hinges) in ETABS
2.6. Automatic, User-Defined, and Generated Hinge Properties
2.7. Automatic Hinge Properties
2.8. Analysis Modeling
2.9. Computational Considerations
2.10. Analysis Results
Nonlinear Modeling of Columns using Fiber Modeling Approach
3.1. Definition of Nonlinear Stress-strain Curves (for Material Fibers)
3.2. Automated Definition of P-M2-M3 Fiber Hinges
3.2.1. Step 1: Defining the Column Reinforcements
3.2.2. Step 2: Defining the Properties of a Master Hinge
3.2.3. Automatic Generation and Assignment of P-M2-M3 Hinges to RC Columns
Nonlinear Modeling of RC Beams using the Plastic Hinge Modeling Approach
4.1 Manual Definition of M3 Plastic Hinges for RC Beams
4.1.1. Step 1: Defining the Hinge Properties
4.1.2. Assigning M3 Plastic Hinges to RC Beams
4.2 Automated Definition of Plastic Hinges
4.2.1. Step 1: Defining the Beam Reinforcements
4.2.2. Step 2: Assigning the M3 Hinges to Beams
Nonlinear Modeling of Shear Walls using Fiber Modeling Approach
5.1. Definition of Nonlinear Stress-strain Curves (for Material Fibers)
5.2. Manual Definition of P-M3 Fiber Hinges
5.2.1. Step 1: Defining the Hinge Properties
5.2.2. Assigning M3 Plastic Hinges to RC Beams
5.3. Automated Definition of P-M3 Fiber Hinges
5.3.1. Step 1: Defining the Shear Wall Reinforcements
5.3.2. Step 2: Assigning the Hinges to Shear Walls
Nonlinear Seismic Analysis Procedures
6.1 The Evolution of Seismic Design Philosophy over Past Few Decades
6.2 Prescriptive vs. Performance-based Seismic Design – A New Front
6.3 Linear Time History Analysis (LTHA) Procedure
6.4 Nonlinear Time History Analysis (NLTHA) Procedure
References
Đánh giá
Chưa có đánh giá nào.