Wind and Earthquake Resistant Buildings Structural Analysis and Design, CONTENTS:
Chapter 1. Wind Loads
1.1. Design Considerations
1.2. Nature of Wind
1.3. Characteristics of Wind
1.3.1. Variation of Wind Velocity with Height
1.3.2. Wind Turbulence
1.3.3. Probabilistic Approach
1.3.4. Vortex Shedding
1.3.5. Dynamic Nature of Wind
1.3.6. Dynamic Nature of Wind
1.4. Code Provisions for Wind Loads
1.4.1. Uniform Building Code, 1997: Wind Load Provisions
1.4.2. ASCE 7-02: Wind Load Provisions
1.4.3. National Building Code of Canada (NBCC 1995): Wind Load Provisions
1.5. Wind-Tunnel Engineering
1.5.1. Rigid Model
1.5.2. Aeroelastic Study
1.5.3. High-Frequency Base Force Balance Model
1.5.4. Pedestrian Wind Studies
1.5.5. Motion Perception: Human Response to Building Motions
Chapter 2. Seismic Design
2.1. Building Behavior
2.1.1. Influence of Soil
2.1.2. Damping
2.1.3. Building Motions and Deflections
2.1.4. Building Drift
2.2. Seismic Design Concept
2.2.1. Structural Response
2.2.2. Load Path
2.2.3. Demands of Earthquake Motions
2.2.4. Response of Elements Attached to Buildings
2.2.5. Adjacent Buildings
2.2.6. Irregular Buildings
2.2.7. Lateral-Force-Resisting Systems
2.2.8. Diaphragms
2.2.9. Ductility
2.2.10. Damage Control Features
2.2.11. Continuous Load Path
2.2.12. Redundancy
2.2.13. Configuration
2.2.14. Dynamic Analysis
2.3. Uniform Building Code, 1997 Edition: Seismic Provisions
2.3.1. Building Irregularities
2.3.2. Design Base Shear, V
2.3.3. Seismic Zone Factor Z
2.3.4. Seismic Importance Factor IE
2.3.5. Building Period T
2.3.6. Structural System Coefficient R
2.3.7. Seismic Dead Load W
2.3.8. Seismic Coefficients Cv and Ca
2.3.9. Soil Profile Types
2.3.10. Seismic Source Type A, B, and C
2.3.11. Near Source Factors Na and Nv
2.3.12. Distribution of Lateral Force Fx
2.3.13. Story Shear Vx and Overturning Moment Mx
2.3.14. Torsion
2.3.15. Reliability/Redundancy Factor
2.3.16. Drift Limitations
2.3.17. Deformation Compatibility
2.3.18. Load Combinations
2.3.19. Design Example, 1997 UBC: Static Procedure
2.3.20. OSHPD and DSA Seismic Design Requirements
2.4. ASCE 7-02, IBC 2003, and NFPA 5000: Seismic Provisions
2.5. Seismic Design of Structural Elements, Nonstructural Components, and Equipment; 1997 UBC Provisions
2.5.1. Architectural Components
2.5.2. Exterior Ornaments and Appendages
2.5.3. Component Behavior
2.5.4. 1997 UBC Provisions
2.6. Dynamic Analysis Theory
2.7. Chapter Summary
Chapter 3. Steel Buildings
3.1. Rigid Frames (Moment Frames)
3.1.1. Deflection Characteristics
3.1.2. Cantilever Bending Component
3.1.3. Shear Racking Component
3.2. Braced Frames
3.2.1. Types of Braces
3.3. Staggered Truss System
3.3.1. Floor System
3.3.2. Columns
3.3.3. Trusses
3.4. Eccentric Braced Frame (EBF)
3.4.1. Ductility
3.4.2. Behavior
3.4.3. Essential Features of Link
3.4.4. Analysis and Design Considerations
3.4.5. Deflection Considerations
3.4.6. Conclusions
3.5. Interacting System of Braced and Rigid Frames
3.5.1. Behavior
3.6. Outrigger and Belt Truss Systems
3.6.1. Behavior
3.6.2. Deflection Calculations
3.6.3. Optimum Location of a Single Outrigger
3.6.4. Optimum Location of Two Outriggers
3.6.5. Recommendations for Optimum Locations of Belt and Outrigger Trusses
3.7. Framed Tube System
3.8. Irregular Tube
3.9. Trussed Tube
3.10. Bundled Tube
3.11. Seismic Design
Chapter 4. Concrete Buildings
4.1. Structural Systems
4.1.1. Flat Slab–Beam System
4.1.2. Flat Slab–Frame with Shear Walls
4.1.3. Coupled Shear Walls
4.1.4. Rigid Frame
4.1.5. Tube System with Widely Spaced Columns
4.1.6. Rigid Frame with Haunch Girders
4.1.7. Core-Supported Structures
4.1.8. Shear Wall–Frame Interaction
4.1.9. Frame Tube System
4.1.10. Exterior Diagonal Tube
4.1.11. Bundled Tube
4.1.12. Miscellaneous Systems
4.2. Seismic Design
Chapter 5. Composite Buildings
5.1. Composite Elements
5.1.1. Composite Slabs
5.1.2. Composite Frame Beams
5.1.3. Composite Columns
5.1.4. Composite Diagonals
5.1.5. Composite Shear Walls
5.2. Composite Building Systems
5.2.1. Composite Shear Wall Systems
5.2.2. Shear Wall–Frame Interacting Systems
5.2.3. Tube Systems
5.2.4. Vertically Mixed Systems
5.2.5. Mega Frames with Super Columns
5.3. Example Projects
5.3.1. Buildings with Composite Steel Pipe Columns
5.3.2. Buildings with Formed Composite Columns
5.3.3. Buildings with Composite Shear Walls and Frames
5.3.4. Building with Composite Tube System
5.4. Super-Tall Buildings: Structural Concept
5.5. Seismic Composite Systems
5.5.1. Moment-Resisting Frames
5.5.2. Braced Frames
5.5.3. Composite Shear Walls
5.5.4. Example Projects
Chapter 6. Seismic Rehabilitation of Existing Buildings
6.1. Code-Sponsored Design
6.2. Alternate Design Philosophy
6.3. Code Provisions for Seismic Upgrade
6.4. Building Deformations
6.5. Common Deficiencies and Upgrade Methods
6.5.1. Diaphragms
6.5.2. Concrete Shear Walls
6.5.3. Reinforcing of Steel-Braced Frames
6.5.4. Infilling of Moment Frames
6.5.5. Reinforced Concrete Moment Frames
6.5.6. Steel Moment Frames
6.5.7. Open Storefront
6.5.8. Clerestory
6.5.9. Shallow Foundations
6.5.10. Rehabilitation Measures for Deep Foundations
6.5.11. Nonstructural Elements
6.6. FEMA 356: Prestandard and Commentary on the Seismic Rehabilitation of Buildings
6.7. Summary of FEMA 356
6.8. Fiber-Reinforced Polymer Systems for Strengthening of Concrete Buildings
6.9. Seismic Strengthening Details
Chapter 7. Gravity Systems
7.1. Structural Steel
7.2. Concrete Systems
7.2.1. One-Way Slabs
7.2.2. T-Beam Design
7.2.3. Two-Way Slabs
7.2.4. Unit Structural Quantities
7.3. Prestressed Concrete Systems
7.3.1. Prestressing Methods
7.3.2. Materials
7.3.3. Design Considerations
7.3.4. Cracking Problems in Post-Tensioned Floors
7.3.5. Concept of Secondary Moments
7.3.6. Step-by-Step Design Procedure
7.3.7. Strength Design for Flexure
7.4. Composite Gravity Systems
7.4.1. Composite Metal Deck
7.4.2. Composite Beams
7.4.3. Composite Haunch Girders
7.4.4. Composite Trusses
7.4.5. Composite Stub Girders
7.4.6. Composite Columns
Chapter 8. Special Topics
8.1. Tall Buildings
8.1.1. Structural Concepts
8.2. Damping Devices for Reducing Motion Perception
8.3. Panel Zone Effects
8.4. Differential Shortening of Columns
8.4.1. Simplified Method
8.4.2. Column Shortening Verification During Construction
8.5. Floor-Leveling Problems
8.6. Floor Vibrations
8.6.1. General Discussion
8.6.2. Response Calculations
8.7. Seismic Isolation
8.8. Passive Energy Dissipation Systems
8.9. Buckling-Restrained Braced Frame
Wind and Earthquake Resistant Buildings Structural Analysis and Design
Đánh giá
Chưa có đánh giá nào.